
Podman in Theory and Practice
WEDNESDAY, JUNE 21ST, 2023

Introduction
This inaugural blogpost of Goose and Quill is intended as a storehouse of my own learn‑
ing on Podman¹, especially centered in its operation on Guix System, a futuristic flavor
of Linux with user freedom at its heart. It should be of use to you. By the time you’ve
reached the end you will have set up Podman rootlessly, created a local Kubernetes clus‑
ter using Podman Desktop and deployed a simple web service to the cluster without any
assumed knowledge of the internals of Kubernetes.

Why Podman?
Podman is enormously useful. Rejected by many as a Docker clone, Podman possesses a
toolset broader than its cousin.²

Podman is a portmanteau for “POD MANager“. The unit of abstraction Podman operates
on is the pod, a collection of software containers that work together to perform their
function. In Docker, the fundamental unit is the container. Because Podman works at
the level of the pod, just like its bigger cousin, Kubernetes, it’s able to serve as an ad‑hoc
container orchestrator.

This level of shared abstraction enables powerful workflows that start at the level of a
container specification, the Containerfile or Dockerfile, and end with a generatedmani‑
fest that runs on any enterprise Kubernetes cluster. You could use just Podman and your
favorite programming language and be well‑equipped to deploy (almost) everywhere,
anywhere.

1. Podman was developed by Daniel Walsh and his team at Red Hat in 2017. Walsh writes in Podman in
Action, 2023 (https://livebook.manning.com/book/podman‑in‑action/front‑matter/), of his aim to, “cre‑
ate a tool that ran the same containerized applications in the samemanner but with more security and
requiring fewer privileges.”

2. Fun fact: Guix System, like Podman, began as a reaction. Guix is a portmanteau of “Guile” and
“Nix” (https://web.archive.org/web/20230910205858if_/https://guix.gnu.org/en/blog/2022/
10‑years‑of‑stories‑behind‑guix/).

1

https://livebook.manning.com/book/podman-in-action/front-matter/
https://web.archive.org/web/20230910205858if_/https://guix.gnu.org/en/blog/2022/10-years-of-stories-behind-guix/
https://web.archive.org/web/20230910205858if_/https://guix.gnu.org/en/blog/2022/10-years-of-stories-behind-guix/

Why rootless?
Running containers rootlessly is both practically powerful and secure. It’s practically
powerful because of the way containers achieve file and network separation from their
host, using namespaces, a Linux kernel feature. When a namespace is created without
elevated privileges, the user’s user ID (UID) and group ID (GUID) are mapped inside the
container. Any files shared across this boundary maintain consistent permissions. The
result is an entire class of annoying container problems that just don’t apply—Docker
Compose veterans understand the pain of setting the right UID and GID when using bind
mounts.

If you’re sharing a workstation with others (more commonly, a server), users can run
their own rootless containers isolated from others’. Podman has even introduced “Pod‑
mansh” in Podman 4.6, which extends this to its logical conclusion: every user logs in to
their own rootless container.

Rootless containers are also secure from container escapes and file mount mishaps that
allow a determined attacker to mount your entire drive and toast it³.

How‑to set up Podman for rootless mode on Guix System
Because Docker, by default, runs root, it can do anything it wants, which makes its per‑
ceived ease of use very high. Rootless Podman is going to take some vim and vigor. After
installing Podman with guix install podman, there’s just two pre‑requisites to boot‑
strap Podman and they’re copy‑paste jobs.

Reserve user and group IDs for Podman tomap into a namespace
Rootless containers use user namespaces⁴.

User namespaces isolate security‑related identifiers and attributes, in
particular, user IDs and group IDs, the root directory, keys, and capabilities.
A process’s user and group IDs can be different inside and outside a user
namespace. In particular, a process can have a normal unprivileged user
ID outside a user namespace while at the same time having a user ID of 0
inside the namespace; in other words, the process has full privileges for

3. https://www.devseccon.com/blog/whats‑so‑great‑about‑rootless‑containers‑secadvent‑day‑24
4. https://man7.org/linux/man‑pages/man7/user_namespaces.7.html

2

https://www.devseccon.com/blog/whats-so-great-about-rootless-containers-secadvent-day-24
https://man7.org/linux/man-pages/man7/user_namespaces.7.html

operations inside the user namespace, but is unprivileged for operations
outside the namespace.

We “trick” our containers into believing they have all the privileges of a rootful environ‑
ment by assigning a range of user and group IDs our rootless container will map inside
their boundary. In the code sample below, which you’ll need to copy into your own Guix
System configuration (here system.scm), we map 65,536 subuids⁵ to our user. Rootless
containers will map, from host to container: 100000 to 1, 100001 to 2, and so on. 1000 to
0 is a special default mapping we don’t need to define.

Change the username string, “worldofgeese” to your own user.

 system.scm

1 (define username "worldofgeese")
2
3 (operating-system
4 (services
5 (cons*
6 ...
7 (simple-service 'etc-subuid etc-service-type
8 (list `("subuid" ,(plain-file "subuid" (string-append "root:0:65536\n" username

":100000:65536\n")))))
9 (simple-service 'etc-subgid etc-service-type

10 (list `("subgid" ,(plain-file "subgid" (string-append "root:0:65536\n" username
":100000:65536\n")))))

11 ...
12)))

Set container image trust policy and activate your changes
Next, set your container image trust policy, which by default prevents the user from
pulling from any and all remote registries.

 system.scm

1 (simple-service 'etc-container-policy etc-service-type
2 (list `("containers/policy.json", (plain-file "policy.json" "{\"default\": [{\"

type\": \"insecureAcceptAnything\"}]}"))))

Onemore nicety before we write, build and run our first image: setting a fast storage
driver. Podman on Guix uses vfs by default and you should absolutely not subject
yourself to it because it is dog slow. You can check for yourself if you’re using vfs with
podman info | grep graphDriverName, which should return graphDriverName:

5. Subuids or subordinate UIDs authorize a user to delegate user IDs into child namespaces.

3

vfs. I won’t go into virtual filesystems here.⁶ overlayfs has been in the kernel since
5.11 so that’s what we’ll be using here. Below where you put your container image trust
policy add the following:

 system.scm

1 (simple-service 'etc-storage-driver etc-service-type
2 (list `("containers/storage.conf", (plain-file "storage.conf" "[storage]\ndriver =

\"overlay\""))))

Activate your changes to system.scm. I keepmine in /.config/guix/system.scm
so I activate a new Guix generation⁷ with my changes by invoking sudo -E guix
system reconfigure /.config/guix/system.scm.
If you’ve used Podman before, you’ll need to run podman system reset after to enable
your new storage driver. Check again with podman info | grep graphDriverName.
It should now read graphDriverName: overlay.

How to package “Hello, World” in Guile on Guix
That’s all we need to run Podman rootlessly! Nowwe’ll create a simple container us‑
ing the Hello HTTP server example from the official website of of the Guile Scheme lan‑
guage⁸.

Create a file, any file, that ends in .scm and inside paste this code:

 my-hello-http.scm

1 ;;; Hello HTTP server
2 (use-modules (web server))
3
4 (define (my-handler request request-body)
5 (values '((content-type . (text/plain)))
6 "Hello World!"))
7
8 (run-server my-handler)

If Guile isn’t already installed, install it with guix install guile. In the example
above where we’ve saved the code to my-hello-http.scm, you can run it directly with

6. Docker has a good intro to storage drivers (https://web.archive.org/web/20230927081131if_/https:
//docs.docker.com/storage/storagedriver/select‑storage‑driver/) as well as a page on each if you’re
curious.

7. A Guix generation is a collection of symbolic links that points to a specific Guix configuration in time. This
gives Guix its power to roll back non‑destructively to previous sytem versions without fuss. Try that with
your Windows system!

8. https://www.gnu.org/software/guile/

4

https://web.archive.org/web/20230927081131if_/https://docs.docker.com/storage/storagedriver/select-storage-driver/
https://web.archive.org/web/20230927081131if_/https://docs.docker.com/storage/storagedriver/select-storage-driver/
https://www.gnu.org/software/guile/

guile my-hello-http.scm, open a web browser and visit http://localhost:8080⁹
where you’ll see, printed, “Hello, World!”.

This code isn’t yet portable: it’s still a script that requires a user to know to install Guile
first, download the code and run it in a file ending in .scm. And it won’t run in Podman,
which expects a container, not a script. In the next section, we’ll write a self‑contained
Guix package definition that generates a container image using Guix. This is a break
fromwhat youmay be used to, which is using Podman or Docker to build an image from
a Containerfile or Dockerfile.

Create a container image with Guix and run it with Podman
To package our “Hello, World!“ example, we’re going to need to write more Guile. This
time, in Guix’s own extension language to Guile.¹⁰ It’s Guile‑ception!

The following code package definition puts the HTTP server code we ran earlier into a
function generate-server-code, then uses Guix’s special “G‑expressions”¹¹ in the
build step. Finally, we generate a manifest that tells Guix the contents of our package.
Replace the code in my-hello-http.scmwith the following:

 my-hello-http.scm

1 (define-module (my-hello-http)
2 #:use-module (guix packages)
3 #:use-module (guix build-system trivial)
4 #:use-module (gnu packages guile)
5 #:use-module (guix licenses)
6 #:use-module (guix gexp))
7
8 (define (generate-server-code guile-path)
9 (string-append "#!" guile-path " -s

10 !#
11 ;;; Hello HTTP server
12 (use-modules (web server))
13
14 (define (my-handler request request-body)
15 (values '((content-type . (text/plain)))
16 \"Hello World!\"))
17
18 (run-server my-handler)"))

9. http://localhost:8080/
10. Teaching Guix’s Guile syntax is out of scope of this post. For an intro, visit the Guix website for a three‑

part tutorial (https://web.archive.org/web/20230601125937if_/https://guix.gnu.org/en/blog/2023/
dissecting‑guix‑part‑3‑g‑expressions/).

11. G‑expressions use special notation (# , #$) to evaluate Guix package expressions inside the build
environment.

5

http://localhost:8080/
https://web.archive.org/web/20230601125937if_/https://guix.gnu.org/en/blog/2023/dissecting-guix-part-3-g-expressions/
https://web.archive.org/web/20230601125937if_/https://guix.gnu.org/en/blog/2023/dissecting-guix-part-3-g-expressions/

19
20 (define server-code
21 #~(generate-server-code #$guile-3.0))
22
23 (define-public my-hello-http
24 (package
25 (name "my-hello-http")
26 (version "0.1")
27 (source #f)
28 (build-system trivial-build-system)
29 (arguments
30 (list #:builder
31 #~(begin
32 (let* ((bin-dir (mkdir-p (string-append #$output "/bin")))
33 (script-file (string-append bin-dir "/my-hello-http")))
34 (with-output-to-file script-file
35 (lambda () (display ,server-code)))
36 (chmod script-file #o755)))))
37 (native-inputs (list guile-3.0))
38
39 (synopsis "My Hello HTTP server")
40 (description "This package contains a simple HTTP server.")
41 (home-page "https://www.gnu.org/software/guile/")
42 (license gpl3+)))
43
44 (specifications->manifest (list "my-hello-http"))

Nowwe need to tell Guix where to find our package. We do that by adding the package
path to the GUIX_PACKAGE_PATH environment variable. On your command line, enter
export GUIX_PACKAGE_PATH=$GUIX_PACKAGE_PATH: /path/to/package. As an
example, if my-hello-http.scm file is in the /home/worldofgeese/testing folder,
I’d enter export GUIX_PACKAGE_PATH=$GUIX_PACKAGE_PATH: /testing.
To test that Guix can find your package, run guix show my-hello-http, which
should print:

1 name: my-hello-http
2 version: 0.1
3 outputs:
4 + out: everything
5 systems: x86_64-linux i686-linux
6 dependencies: guile@3.0.9
7 location: my-hello-http.scm:10:2
8 homepage: http://example.com
9 license: GPL 3+

10 synopsis: My Hello HTTP server
11 description: This package contains a simple HTTP server.

Now, from /home/$USER enter guix pack -f docker -m testing/my-hello-http.scm.
Voilà! A container image is produced in the Guix store¹². We can load this image directly

12. https://guix.gnu.org/manual/en/html_node/The‑Store.html

6

https://guix.gnu.org/manual/en/html_node/The-Store.html

into Podman like so:
1 > podman load < /gnu/store/235f92alcfr7hfjbs8a0snnnrxz3ill1-my-hello-http-docker-pack.tar.gz
2 WARN[0000] "/" is not a shared mount, this could cause issues or missing mounts with rootless

containers
3 Getting image source signatures
4 Copying blob 304960ad3eb5 done
5 Copying config b1a55ba007 done
6 Writing manifest to image destination
7 Storing signatures
8 Loaded image: localhost/my-hello-http:latest

Then run it with podman run localhost/my-hello-http.
Now if you visit http://localhost:8080¹³ you’ll see, again, “Hello, World!”.

13. http://localhost:8080/

7

http://localhost:8080/

